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ABSTRACT

A fuzzy logic resource manager that enables a collection of unmanned aerial vehicles (UAV's) to automatically cooperate
to make meteorological measurements will be discussed. Once in flight no human intervention is required. Planning
and real-time control algorithms determine the optimal trajectory and points each UAV will sample, while taking into
account the UAVS' risk, risk tolerance, reliability, mission priority, fuel limitations, mission cost, and related
uncertainties. The control agorithm permits newly obtained information about weather and other events to be
introduced to allow the UAVsto be more effective. The approach isillustrated by a discussion of the fuzzy decision tree
for UAV path assignment and related simulation. The different fuzzy membership functions on the tree are described in
mathematical detail. The different methods by which this tree is obtained are summarized including a method based on
using a genetic program as a data mining function. A second fuzzy decision tree that allows the UAV s to automatically
collaborate without human intervention is discussed. This tree permits three different types of collaborative behavior
between the UAVs. Simulations illustrating how the tree allows the different types of collaboration to be automated are
provided. Simulations also show the ability of the control algorithm to allow UAVsto effectively cooperate to increase
the UAV team’s likelihood of success.
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1. INTRODUCTION

Knowledge of meteorological properties is fundamental to many decision processes. Due to personnel limitations and
risks, it is useful if related measurement processes can be conducted in a fully automated fashion. Recently developed
fuzzy logic planning and control agorithms that allow a collection of unmanned aerial vehicles (UAVS) and an
interferometer platform (IP) to automatically collaborate will be discussed™ 2. In particular, the fuzzy decision trees™®
(FDTs) that “assigns UAV s to paths” (AUP) and the FDT for “priority for helping” (PH) are discussed. The AUP FDT
is used by both the planning and control algorithms. The PH FDT is used by the rea-time control algorithm to allow
automatic cooperation between the UAV s through communications.

The fuzzy logic based planning and control algorithms that have been developed allow a collection of UAV's making up
the UAV team to engage in cooperative sampling of the atmosphere in real-time without human intervention. Each
agorithm determines the best flight paths by minimizing a cost function™ 2. Once flight paths are determined the AUP
FDT and adefuzzification algorithm explained below are used for UAV flight path assignments.

The AUP FDT incorporates fuzzy concepts related to UAV sensor reliability, UAV non-sensor reliability, the UAV's
value, the UAV custodian’s risk-tolerance, and the UAV's speed. The AUP FDT also incorporates fuzzy concepts
related to the path the UAV might fly including: mission risk and mission priority.

Each UAV has onboard its own fuzzy logic based real-time control agorithm that uses the PH FDT. The control
algorithm renders each UAV fully autonomous; no human intervention is necessary. The control algorithm aboard each
UAYV will alow it to determine its own course, change course to avoid danger, sample phenomena of interest that were
not preplanned, and cooperate with other UAVs. The PH FDT incorporates the fuzzy concepts related to UAV
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properties used by the AUP FDT as well as path concepts somewhat different than those previously used. There will be
two different types of cooperation alowed by the PH FDT and three classes of help requests.

The first type of cooperation that the UAVs may exhibit is to support each other if there is evidence that an interesting
physica phenomenon has been discovered. If one UAV seems to have discovered a radio hole, it can request that
another UAV or UAVs help determine the extent of the radio hole so the IP can fly around it. Similar cooperation can
be carried out if aUAV may have discovered other elevated extended weather systems.

The second type of cooperation that the UAVs can exhibit through their control algorithm is when a UAV is
malfunctioning or may be malfunctioning. If a UAV’sinternal diagnostics indicate a possible malfunction, then it will
send out an omni-directional request to the other UAVsfor help. Each UAV will calculate its priority for providing help
using a fuzzy logic procedure described below. The UAV's send their priority for providing help message back to the
requesting UAV. The requester subsequently sends out a message informing the group of the ID of the highest priority
UAYV. The high priority UAV then proceeds to aid the requester.

The support provided by the helping UAV can take on different forms. If the requester suspects a mafunction in its
sensors, the helper may measure some of the same points originally measured by the UAV in doubt. This will help
establish the condition of the requester’s sensors. |f additional sampling indicates the requester is malfunctioning, and
represents a liability to the group it will return to base. In this case the supporter may take over the mission of the
requester. Whether or not the supporter samples al the remaining sample points of the requester; subsequently,
abandoning its origina points depends on the sample points’ priorities. A fuzzy logic based procedure for determining
sample point priorities is discussed below. If it is established that the requester is not malfunctioning or the requester
can still contribute to the mission’ s success it may remain in the field to compl ete its current mission.

Section 2 develops a fuzzy logic based approach for assigning UAVs to paths. Section 3 emphasizes real-time UAV
control and the fuzzy decision tree (FDT) that allows UAV's to automatically cooperate. Section 4 provides results of
computational experiments. Finally, section 5 gives a summary.

2. AUPFUZZY DECISION TREE

The planning algorithm® ? determines the path each UAV will pursue, which points will be sampled, the minimum
number of UAVSs required for sampling the points and makes assignments of UAVs for measurements at particular
points. UAVs are assigned as a function of their abilities to sample high priority points first. The planning algorithm
determines flight paths by assigning as many high priority points to a path as possible taking into account relative
distances including sampling and non-sampling velocity, risk from taboo points, and UAV fuel limitations. Once flight
paths are determined it assigns UAV s to paths (AUP) using the AUP FDT which is devel oped below.

Points in the measurement space are considered taboo if they are threatening to the UAVS, eg., because of local
turbulence or the presence of physical obstructions such as mountain tops. Position vectors measured from the origin for

the taboo points are denoted as t;,i = 1,2,..., N0 Where ni, isthe number of taboo points.

Each UAV will fly from lattice point to lattice point, i.e., grid point to grid point, let one such route be given by the
matrix of points,

Path: ﬁl, ﬁz’”"Pnpath’ﬁl (1)

where the ordering of points gives the direction of the route, i.e., starting at P, and ending at P,. Let the degree of
undesirability of the neighborhood associated with taboo points, T, = 1.2,..., Moo be denoted s (§,P;) for the route

points P;,j=12,...,Nyy, . The definition of the mission risk (MRY) is
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.. . MNaboo Mpath -
mission_risk(Taboo,Path, )= >, Y /Jrisk(tiipj) )
I

The degree to which the k™ path belongs to the related fuzzy concept MR s given by

mission_ risk(Taboo, Path, ) ©)
max{mission_risk(Taboo, Path, )}
J

yr(Taboo, Path, ) =

A fuzzy concept related to “mission risk” is“low risk.” The fuzzy membership function for “low risk” denoted as x5
isdefined as

/ULR(Ta.bOO,Pthk)E mn(l,a+1_ﬂMR) (4)

where « €(0,1) isan expert defined parameter. The function of « isto make sure that “low risk” does not dominate the
calculations devel oped below.

Within the path specified by (1), let there be the following sample points to be measured, 51- ,j=12,...,n Let the

5 -
function prio assign priorities to the sample points, i.e, prio(éj ) is the priority of the j™ sample point. The values that
prio(éj ) can take are positive integers with one representing the highest priority, two the next highest priority, etc. The

mission priority (MP) for the k™ Path, is defined to be

mission_ prio(Path, )= nip;q : (5)
i=1 prio(s)

The degree to which the k™ path belongs to the related fuzzy concept MP is given by

mission__ prio(Path, )

#p (Pathy )= max{mission_ prio(Path, )} X
]

The fuzzy degree of reliability experts assign to the sensors of UAV(i) is denoted as u4 (UAV(i)). Thisisarea number

between zero and one with one implying the sensors are very reliable and zero that they are totally unreliable. Likewise,
e (UAV (i) is the fuzzy degree of reliability of other non-sensor systems onboard the UAV/(i). This fuzzy concept

relates to any non-sensor system, e.g., propulsion, computers, hard disk, deicing systems, etc. The value of UAV(i) in
units of $1000.00 is denoted as V(UAV(i)). The amount of fuel that UAV/(i) has at time tis denoted fuel (UAV/(i)t).

All the UAV s participating in amission are assumed to leave base at time, t =t .

Let UAV(i)'s fuzzy grade of membership in the fuzzy concept “risk tolerance’ be denoted as 4 o (UAV(i)). The
quantity, #ig_o (UAV(i)), is a number between zero and one and will be simply referred to as UAV/(i)’s risk tolerance.

If the risk tolerance is near zero then the UAV should not be sent on very risky missions. If the UAV’srisk toleranceis
near one then it can be sent on very risky missions. It seems natural to compare “risk tolerance” to “Vaue.” So the
comparison can be carried out on the same footing, a fuzzy concept of value should be defined.

The fuzzy grade of membership of each UAV that can be assigned to the mission in the fuzzy concept “Value” is defined
as
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The advantage of the concept of “risk tolerance” isthat it gives the user an extra concept to exploit. If the UAV is nhot of
great relative value, but it still might be needed for a crucial mission after the current one, it might be useful to giveit a
low risk tolerance so that it is not lost on the current mission. This may allow it to be used on the following mission.

Another fuzzy concept and related fuzzy membership function that will be defined is“fast.” A UAV issaid to be fast if
it takes a short time to travel a particular path. Let the T(UAV(i),Path) be the amount of time it will take UAV(i) to fly

and make measurements along Path. The fuzzy membership function for the concept “fast” is defined as follows:

T(UAV (i), Path)
mJax{T (UAV(j), Path)} (8)

tiag(UAV (i), Path) = Ay -minf Lor +1-

and
Arrtmp = Z[mi n(/ug B )_ & rel 'min[l_ Hrisk—tol » max(l— /UMP’gz,MP)]_ €3 rd ] ©)

where &), ,£2mp €3rd € (04] are expert assigned parameters. The Heaviside step function denoted as y in (9) takes
the value one when its argument is greater than or equal to zero and is zero otherwise.

The term & 'min(l_xurisk—tol ,nnx(l—yMP,gvap)) in the Heaviside step function’s argument in (9) can result in
Arrimp 90INg 10 ZE0 if 11y 1 OF 11yp @€ small enough. I “risk tolerance” and “mission priority” take low values then
depending on the value of &, , the membership function for the fuzzy concept “fast” may take the value zero. The
parameter ¢, p limits the effect of “mission priority.” Even if the mission priority is very high, risk tolerance plays an

important role. If the UAV has high risk tolerance and the path, high mission priority the UAV must have a minimum
reliability given by ;3,4 . Finaly, the motivation for the concept “fast” is that a fast UAV experiences alower relative

risk sinceitisin the field lesstime and may be exposed to risk for a shorter duration.

A fuzzy concept that combines “Value” and “mission risk” is “VMR" and its membership function denoted as 1 ygiS
defined as

Hywr = Mi n(mi n(/urisk—tol RN, ),AND2 (ﬂfast vﬂLR» (10)

The use of AND,in (10) allows distinctions to be made between various values of ¢ and u g. If AND, were
replaced by a min in (10) then if . islow enough then min(u g 4 » ) Would take the value u i, independent of the
valueof u r thiswould not alow fine distinctions to be made.

Thelogical connective AND,, is defined as

ANDZ(,uAuuB)E,U AHB (11)

The fuzzy concept “RMP” combines the fuzzy concepts “sr,” “nsr,” and “MP.” The fuzzy membership function for
“RMP,” denoted as pgyp is defined as
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Hrup = Min(ug ting \Hiyp ) (12)
Both the membership functions for “VMR” and “RMP” can be represented as fuzzy decision trees.

Finally, the fuzzy membership function for the fuzzy concept “assignment of UAV (i) to the path” (AUP) is defined as

Haup = ANDZ[/‘RMP! ANDz(ﬂRMP:#VMR)]: #RMP2 “Hyvr (13)

The fuzzy membership function for AUP is a decision tree that combines both “VMR” and “RMP” as subtrees. The use
of AND, in (13) in two places renders u,p more sensitive to the values of ugyp and g than it would be if the

membership function for AUP took the value min(ugyp.zamr ). If 2 aup Were to take the value min(ugye . 2amr) then
asmall value of pgyp suchthat pugyp < toyyr Would cause uap to take the value of e independent of the value of
Hyvr - The use of AND, instead of min allows finer distinctions to be made. The second degree dependence of
Hrvp 1N (13) resultsin asmall value of g ayp if sgyp iSsmall, but e isstill dependent on zyg . Thisis consistent
with expertise. If the sensor or non-sensor reliabilities or mission priority are small, g yp should be small. Low
reliability or priority resultsin afaster declinein g5 p than high mission risk, high UAV value, low UAV risk tolerance
or the fact that areliable and risk-tolerant UAV isslow.

The fuzzy concept AUP is depicted as a tree in Figure 1. For both FDTs described in this paper the following
conventions are observed. Leaves of the tree, i.e., those vertices of degree one are labeled by the names of the fuzzy
concepts described above. Vertices are labeled by the specific logical connective used, i.e., min or AND,. A circleon

an edge indicates the fuzzy logic modifier not. The fuzzy modifier not is defined as the complement of the fuzzy set,
i.e, let u, be the fuzzy membership function for the fuzzy concept A then membership function for not A is given by
1- u, . A diamond on an edge refers to a function related to not which has alower bound of « which is generally not
zero. The mathematical form of this modifier is min[La +1- ,uA] . The quantity « is an expert defined quantity. Thisis

a bounded sum” 8 between the complement of A and the crisp number « . An elipse label as * Pow," indicates that the
value of theinput fuzzy grade of membership is raised to the power “q". Thevalue“q” istaken astwo for this paper.

RMP RMP
MIN| MIN MIN| MIN
[ sR |[nsr|[ mMp | [wmr| [ srR |[NsrR|[ wP |
MIN
MIN AND2
RISK-TOL | | VALUE | |[FAsT | |Low-RiSK

Figure 1: The AUP fuzzy decision tree.

Given the fuzzy grade of membership, it is necessary to defuzzify, i.e., make definite UAV-path assignments. Simply
assigning the UAV with the highest fuzzy grade of membership for a particular path to that path can give less than
desirable results. The approach to defuzzification taken is as follows: if the number of UAVs is denoted as n;,, and
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likewise, the number of paths is denoted by n ., , where ny,y > Ny then consider the set of al possible permutations
of the np., UAV's selected from a total of nya, UAVs. For each assignment of n,, UAVSs to the paths, add up the

values of upfor that assignment over the paths. This sum is referred to as the assignment benefit (AB). The
assignment with the highest AB isthe one selected. Finally, asimilar procedure isfollowed if nya, <Ny, -

The decision tree for AUP given in (13) was constructed using expertise provided by human experts. It is a significant
improvement over a previously developed fuzzy decision rule for path assignment also constructed from expertise’. An
alternate method of obtaining (13) is to evolve it using a genetic program® (GP). A GP is a computer program based on
the theory of evolution that evolves mathematical expressions or computer programs that can be considered optimal in a
sense. The GP has been used as a data mining function™ to create the decision tree in (13). The GP data mined a
scenario database where each scenario had been labeled by an expert. Expert rules were also incorporated to guide the
evolutionary process and improve convergence time. The decision tree in (13) has been evolved many times. The GP
finds the same AUP decision tree, over and over again independent of the seed of the random number generator used to
simulate arandom evolutionary process.

MIN

|MP||NSR||SR| |FB|

| FAST | | LOW-RISK |

Figure 2: PH fuzzy decision tree

3. CONTROL ALGORITHM

Each UAV has a real-time algorithm onboard it that allows recalculation of paths during flight due to changes in
environmental conditions or mission priorities. These changes typically become apparent after the planning algorithm
has run during the pre-flight stage. As in the case of the planning algorithm the control algorithm uses an A-star
agorithm™ to do the best path calculation, employs fuzzy logic and solves a constrained optimization problem. This has
prover112 successful for real-time application. Other routing algorithms may be considered for this application in the
future™.

The control agorithm allows UAVs to cooperatively help each other without human intervention. A UAV may requests

help if it discovers a potential elevated system like a radio hole, malfunctions or suspected malfunctions. All of these
conditions can result in help messages being transmitted between the UAVs. These help messages can result in
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interactions between the UAV's based on transmission of the results of priority calculations for rendering support to the
requesting UAVSs.

Each UAYV receiving this message calculates its priorities for providing assistance to the UAV in need using the priority
for helping (PH) FDT which is developed in this section. The fuzzy grade of membership in the concept PH is
subsequently transmitted to the original UAV desiring support. The requesting UAV sends out an omni-directional
message with the ID of the UAV with highest priority for contributing support. The high priority UAV then flies into
the necessary neighborhood of the requesting UAV to provide help.

When a UAV sends out an omni-directional request for help, those UAVs receiving the message will calculate their
fuzzy priority for helping, denoted as “PH.” The UAV that will ultimately help the requester is the one with the highest
fuzzy priority for helping. The fuzzy priority for helping takes into account a variety of properties of the potential
helper. The set of UAVs that receive the request for help from UAV(i) at time tis denoted ashelp(it). If UAV(i)
requests help at time tand UAV(j) receives the message then UAV(j) will take into account the amount of time,
denoted, help_time(UAV(j)), it will take to fly from the point where it received the request to the point where it would

provide support. It also takes into account the amount of fuel UAV(j) has left at the time of the request, denoted
fuel (UAV(j),t) and UAV(j)’sfuzzy concept of “mission priority” at time, t .

3.1 Fuzzy decision treefor providing help

The next fuzzy decision tree to be developed is the “priority for helping” (PH) decision tree. This tree allows the UAVs
to determine how they should support each in rea-time as the need arises. When a UAV requires help in making a
measurement, its diagnostic systems indicate a sensor might be malfunctioning or there is a clear indication of a
malfunction, a UAV can request that another UAV provide help. The request for help is sent out as an omni-directional
message. When a UAV sends out an omni-directional request for support, those UAV's receiving the message will
calculate their fuzzy priority of providing help, denoted as up, . The UAV that will ultimately help the requester is the
one with the highest value of up,, . The fuzzy concept, priority for helping, takes into account properties of the potential
supporter. The set of UAVs that receive the request for help from UAV(i) at time t is denoted ashelp(i,t). If UAV(i)
requests help at time t and UAV(j) receives the message then UAV (j) will take into account the necessary travel time it
will consume in helping UAV (i), as well as the relative amounts of fuel and battery life the potentia helper, UAV(j), has
at the time the request is received. Define the relative degree of fuel and battery power left at time, t, that UAV())
might use to help UAV (i) as

fuel (UAV(j)t) (14)

max  fuel(UAV (k),t)
kehelp(i,t)

i i, ,1)=

and

battery(UAV (j),t) (15)

max battery(UAV (k),t)
kehelp(i,t)

Hpattery (i ] ,t) =

Define the relative degree of UAV(j)’ s “ not-separation” from UAV (i) as

TUAV(}),Qreq(ii)) =

max  TIUAV(k),Qreq(i1))
kehelp(i,t)

Hnsep(i, j,t)=min LB +1-
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where T(UAV(j),Qreq(j,i)) is the time it would take UAV((j) to travel the path Qeq(j.i) from the point p?)s(j t)where
UAV(j) receives request for help at time, t, from UAV (i) to the final point , anequst(i),i , where it would start helping
UAV(i). The subscript “req” on Qreq(j,i) is an abbreviation for “requested path.” The quantity, (i)-1, isthe

number of points that UAV(j) would pass through in going from its position at time, t, to the first new sample point,

Nrequest

anequw (i )i -

The travel time T(UAV/(j),Qreq(j.i))is determined by an A-star algorithm™ > ** and includes sampling and non-sampling
velocities.

The quantity, 3, is added o that 1,e(i, j,t) remains nonzero even for the UAV in the set help(i,t) that will take the
maximum amount of time, which leaves open the possibility of the slowest UAV participating in the coordinated team.

The quantity, g, isan additive constant to be determined such that
0<p<1. 17)
Let the path from anequ o (i)+1i » thefirst flight point beyond anequ o (i)i o 1O Rlase» the position of the base that UAV(j)

returnsto after helping UAV (i) be denoted as Qg (j |) where the subscript “sar” denotes “sample and return.” The full
path that UAV(j) will fly in support of UAV (i) is denoted as

SPath(j,i) = [Qreq(i:1) Qua (1,1 (18)

where the notation SPathis an abbreviation for “support path.” It should be recalled that Qreq(j,i) isamatrix of order
(1+ Nrequest 1)) x 3where the “3" arises from representing points in three spatial dimensions. If the path Qg (j,i) has
ng (i)points then Qg (j,i) is a ng(ji)x3matrix.  The path SPath(j,i) is then represented by a
(t+ nrequest () + ngyr (.1))x 3matrix. The path Qg (j,i) and subsequently SPath(j, i) can contain non-sampling points, new

sampling points contributed by UAV(i) and old sampling points originally assigned to UAV(j), assuming UAV(j) has
enough fuel and battery time left to sample all these points.

As an intermediate step define the quantity below

FB(UAV(j), SPath(j,i)) = (19)
min] fuel VAV (j),t)+ & e , battery(UAV(i), )+ patery |- TUAV (), SPath(] i)

The parameters eq,q and &paery, are added to make sure that UAV(j) has sufficient fuel and battery time in the face of

travel uncertainties such as head winds which may prolong flight times. The notation, “FB,” in the name of the function
in (19) is an abbreviation for “fuel and battery.”

Let UAV(j)’ s fuzzy degree of membership in the fuzzy concept “fuel-battery-separation” (FBS) be defined as
nres(UAV () UAV (i), SPath(j,i)) = FBUAV (j), SPath(j,i))- pnsep(is it): #1uel (i J:t): tpattery i, 1) (20)
The FBS fuzzy decision tree is depicted in Figure 2.

Finally, enough formalism has been developed to define the membership function for the fuzzy concept “priority for
helping” (PH) for UAV(j) to help UAV (i). This membership function is defined as
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#pr (UAV (j)UAV (i), SPath(ji)) = (21)
min|uegs(UAV (1) UAV (i), SPath(j,i)), aup (UAV (i) UAV (i), SPath(j i )]

The UAV that has the largest degree of membership in “priority for helping” is the one that will be assigned by UAV (i)
to provide support. The PH fuzzy decision tree is depicted in Figure 2.

4. COMPUTATIONAL EXPERIMENTS

This section considers computational examples related to multi-UAV assignment during the control stage for four
measurement processes. During the actual operation of the measurement processes different events arise resulting in the
PH tree making various assignments.

The measurement space in the planning and control stages consists of an atmospheric volume 60 miles wide, by 60 miles
long, and 15 miles in maximum atitude measured from the ground which is assumed to be a flat plane. There are
initially nine points to be sampled. The points are assumed to be surrounded by spherical neighborhoods of desirability.
The degree of desirability of each sample point varies with distance. The degree of desirability of different sample
points at different ranges can vary.

There are many taboo points. These taboo points and their associated neighborhoods of undesirability give rise to
significant degrees of mission risk for each of the paths ultimately selected by the planning and control algorithms.

An idealized model of UAV behavior has been selected for these computational examples. The UAV's are assumed to
have operational efficiencies that vary with atitude. At higher altitudes the engines are considered less efficient. When
the UAV's change dltitude more fuel is consumed than when they fly in a plane paralel to the earth. The UAV’s fuel
consumption efficiency, when descending is assumed to be much better than when ascending.

Although not depicted, there are many taboo points. It is largely the taboo points that determine at which points
sampling is conducted. Given the neighborhoods of desirability around the ideal sample points, there are many points at
which sampling can occur.

The planning and control algorithms ultimately determine that given the UAV properties in terms of fuel consumption
efficiency described above and the extent of the neighborhood of desirability around sample points, sampling should be
conduced in three planes parallel to the ground plane. These three planes are located at altitudes of 5 miles, 10 miles,
and 15 miles above the ground and labeled asthe “1 plang,” “2 plane,” and “3 plane,” respectively.

In the five figures in this section, the following notation is used. Each point to be sampled is labeled by an “0” and an
ordered triple of humbers. The ordered triple gives each sample point’s “point index,” “point priority,” and “path
index.” The “point index” gives the order in which the point is sampled along the path with a given “path index.” A
point with a “point index” of one is sampled first, followed by the sample point with “point index” of two and so on.
The “path index” is the number of the UAV that is assigned to do the sampling. The “point priority” gives the point’s
priority or importance for sampling. Points with priority one are the most important followed by priority two points and
so on. Finadly, points will also be referred to as being at the position (x, y, z) miles where “x” refers to the horizontal
axes, “y" the vertical axes, and “z” the dtitude of the planes depicted in Figures 3-7.

Figure 3 depicts the planning stage. The planning agorithm determines that three UAVs are required for the
measurement process. The UAVs were deliberately selected so that fuel and battery life would not be the only
determining factor for point measurement assignments. The fact that the planning and control algorithms have the
UAVs sample in planar regions at particular altitudes reflects fuel efficiency of the UAVs. The UAVs use less fuel
when flying parallel to the earth than when ascending. They use less fuel flying equal distances in planes nearer the
earth than those at higher altitudes. The distribution of points to be sampled ultimately determined that three sample
planes and hence three UAV's are required.
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Plane 1 of Figure 3 has four points to be sampled. The planning algorithm using the AUP FDT determined that three of
the points are to be sampled by UAV/(1) and one of them by UAV(2). Given the proximity of the points to be sampled
by UAV(2) to the base at (0, O, 0) miles it was determined that UAV (2) should sample in plane 2 first and subsequently
sampling itsthird point in plane 1 while it is descending.

Plane 2 contains the first two points that UAV(2) isto sample. Plane 3 contains all three of the points that UAV(3) isto
sample.

Figure 4 depicts the control stage for example 1. Initially, the UAVs follow the paths determined by the planning
algorithm. Unfortunately, UAV (2) fails immediately after sampling the point at (10, 20, 10) milesin plane 2. UAV(2)
sends out an omni-directional message to the other two UAVsin the field. They calculate their priority for helping using
their PH FDTs. It is determined by the PH tree that UAV(3) should sample those points missed by UAV(2). So
UAV(1) samples those points assigned during planning, UAV(2) samples the first point assigned to it and fails after
transmission and UAV (3) samples those points missed by UAV (2).

60 1Plane 60 2 Plane 60 3 Plane
50 0(3.1.2) 50 0(2.,2,2) 50
40 40 40
a
£ °@.1.1) £ § a0
20 °2.1.1) 20 o(1,2,2) 20
10 o(.1.1) 10 10 o(1,3.,3(2.3.3) 0(3,3.3)
0 10 20 3 a0 5 60°0 10 20 30 40 50 60 %0 10 20 30 40 50 60
miles miles miles

Figure 3: Sampling by three UAVs as determined in the planning stage.

60 1 Plane 60 2 Plane 60 3 Plane
50 o(5,1,3) 50 o(4,2,3) 50
40 40 40
é 30 °@3.1.1) ig} 30 % 30
20 0(2,1,1) 20 o(1,2,2) 20
10 o(1,1,1) 10 10 o(1,3,3(2,3.3) 0(3,3,3)

0 0 10 20 30 40 50 60 Y 0 10 20 30 40 50 60 o 0 10 20 30 40 50 60
miles miles miles

Figure 4: The control stage for example 1.

Figure 5 illustrates the control stage for example 2. The planning stage is the same as in example 1 except changesin
risk evaluation during the planning stage result in the point at (10, 50, 5) miles being assigned to UAV (1) instead of
UAV(2). After the point in Figure 5 at (10, 20, 10) miles is sampled, a message is sent out that the points at (40, 50, 5)
and (40, 60, 5) miles should be sampled. The PH tree determines that UAV (2) should do the sampling of the new points.
So UAV (2) samplesits old points and then samples the points at (40, 50, 5) and (40, 60, 5) milesin that order. The other
UAV s sample the points that were originally assigned.

Figure 6 depicts the control stage for example 3; the planning stage assignments are the same as in example 2. Sampling
by three UAVs s conducted as determined in the control stage. After the point labeled (2, 1, 1) in Figure 6 is sampled, a
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general request is sent out for the neighborhood of two sampled points to be re-sampled. The new points to be sampled
are at (10, 15, 5) miles and (20, 25, 5) miles. The PH tree determines that UAV(2) should sample the two new points.
UAV (1) isthe UAV that made measurements in those neighborhoods the first time. So UAV(2) completesits originally
assigned points and then flies back to sample the new points. The other two UAV's sample only those points originally

assigned to them.

Figure 7 represents the control stage for example 4, an extension of example 3. The first phase of this example is the
same as example 3. Once again, UAV(2) samples the new points at (10, 15, 5) and (20, 25, 5) miles. After the point in
Figure 7 at (10, 15, 5) miles is sampled, a request is made to make a measurement at a new point at (20, 25, 10) miles.
UAV (2) is selected by the PH FDT calculations to sample the new point because of the lateness of the request.

60 1 Plane o(4.,1,2) 60 2 Plane 60 3 Plane
50 o(4,1,1) 0(3,1,2) 50 0(2,2,2) 50
40 40 40
8 8 38
E30 °(3.1.1) E 30 E 30
20 o(2.1.1) 20 o(1.,2,2) 20
10 o(1,1.1) 10 10 0(1,3,3(2.3.3) 0(3.,3.3)
B 10 20 30 40 50 6090 10 20 30 40 50 60%0 10 20 30 40 50 60
miles miles miles
Figure 5: The control stage for example 2.
1 Plane 2 Plane
60 60 60 3 Plane
50 o(4.1.1) 50 0(2.,2,2) 50
40 40 40
0 [
3 8 3
T30 °@3,1.1) €30 T30
0(3,1,2)
20 0(2,1,1) 20 o(1,2,2) 20
o(4,1,2)
10 o(1,1,1) 10 10 o(1,3,3(2,3.,3) 0(3,3,3)
%o 10 20 30 40 50 60 %0 10 20 30 40 50 6090 10 20 30 40 50 60
miles miles miles
Figure 6: The control stage for example 3
1 Plane 2 Plane 3 Plane
60 60 60
50 o(4.,1.1) 50 0(2,2,2) 50
40 40 40
38 8 38
E 30 °@3.1.1) E 30 E30
0(3,1,2) o(5,2,2)
20 0(2,1,1) 20 o(1,2,2) 20
0(4.,1,2)
10 o(1.1.1) 10 10 0(1,3,3(2,3.,3) 0(3,3,3)
) 10 20 30 40 5 0% 10 20 3 4 50 60 %0 10 20 30 40 50 60

miles
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miles

Figure 7: Thisisthe control stage for example 4 an extension of example 3.
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5. SUMMARY

Fuzzy logic based planning and control algorithms that allow a team of cooperating unmanned air vehicles (UAVS) to
make meteorological measurements have been developed. Two fuzzy decision trees (FDTs) fundamental to the planning
and control algorithms are provided in detail. The first of these assigns a UAV to a path (AUP). A related
defuzzification algorithm is provided. The AUP FDT incorporates fuzzy concepts related to UAV sensor reliability,
UAYV non-sensor reliability, the UAV’'svalue, the UAV custodian’ s risk-tolerance, and the UAVs speed. The AUP FDT
also incorporates fuzzy concepts related to the path the UAV might fly including: mission risk and mission priority.

The FDT that is used for multi-UAV cooperation is developed. When a UAV requests help each UAV receiving the
requests will calculate its priority for helping (PH) the requester using the PH FDT. This tree can be used by the UAV
for three different types of automatic cooperation. The PH FDT permits the UAVs to collaborate without human
intervention. The PH FDT incorporates the fuzzy concepts related to UAV properties used by the AUP FDT as well as
path concepts somewhat different than those previously used. Experimental results are examined.
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